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The influence of polymer on the diffusion of a spherical tracer
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We analyze how the addition of a small number of polymer molecules influences the diffusion
constant of a spherical tracer, whose radius is small compared to the size of the polymer. We show
that the polymer chain can be regarded as a two-dimensional object which is an impenetrable
obstacle for the tracer. It is also shown that the diffusion constant of the tracer, in contrast to the
solution viscosity, is independent of chain length, depending only on the monomer concentration.
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The analysis in this note was stimulated by experimen
studies of the influence of the addition of polymer molecu
on the conductance of ionic channels.1 To analyze this influ-
ence it is desirable to first gain a clear understanding of h
the addition of polymers changes ionic conductivity of bu
solutions. To gain insight into this problem in this note w
ask a simpler question: how does the presence of long p
mer molecules influence the motion of an uncharged sph
cal tracer diffusing in the solution?

Many important cellular functions are controlled by th
transport of ions through lipid bilayer membranes surrou
ing cells.2 Ions in aqueous solution cannot cross poorly p
larizable membranes;3 instead they pass through hydrophil
pores of ion channels formed by membrane-spann
proteins.4,2 One of the most challenging topics in mode
molecular biology is that of determining the structure a
transport properties of hydrophilic pores as well as
mechanisms responsible for conformational transitions
tween states of different ionic conductance. The use
water-soluble polymers to study ion channels has rece
been suggested as a useful tool to estimate structural pa
eters relevant to the properties of channels.5,1

Experimental evidence shows that while the solution v
cosity depends on the chain length, the conductance dep
only on the concentration of monomers.1 An example of this
behavior given in Fig. 1 demonstrates a significant incre
of solution viscosity due to the increase of chain length,
accompanied by a significant decrease in conductance.

To understand this seeming contradiction to traditio
ideas, according to which the conductivity is inversely p
portional to the viscosity, we consider a simplified proble
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in which a neutral spherical tracer diffuses in a solution co
taining long polymer molecules. We will see that the po
mer chain can be regarded as a two-dimensional object,
penetrable to the tracer. It will be shown that the diffusi
constant of the tracer behaves qualitatively like the cond
tivity. In contrast to the solution viscosity, it is independe
of chain length, and depends only on monomer concen
tion.

In studying the influence of added polymer on the diff
sion constant of the tracer, we assume that the polymer m
ecule is modeled as a Gaussian chain comprised ofN(@1)
monomers~beads! connected by bonds, each of which is
lengtha. Further, we model the tracer as a spherical ball
radiusb, assumed to be much larger thana and much smaller
than the characteristic size of the polymer molecule which
the radiusRN}aN1/2. We thus havea!b!aN1/2.

A most naive picture represents the polymer chain b
set of N monomers which uniformly fill a sphere of radiu
RN . From this picture one might conclude that the larger
size of the polymer chain, the easier it will be for the trac
to pass through the domain occupied by the chain. Inde
since the volume of the sphere,yN , is proportional toN3/2,
the concentration of monomers in the sphere is proportio
to N/yN}N21/2, so that increasingN makes it easier for the
tracer to pass through the domain occupied by the chain.
will show that, in fact, the tracer cannot pass through a lo
chain without perturbing it since the chain covers a tw
dimensional surface which blocks tracer motion.

The pitfall in the preceding argument is that a picture
the polymer as a collection ofN monomers uniformly filling
a sphere of radiusRN appears only after averaging over a
chain configurations. This was first pointed out by Kuhn6

Later this question was investigated in greater detail by Sˇ
and Stockmayer7 and later by Rudnick and Gaspari.8 Related
studies were carried out by Rubin and Mazur.9

,
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To support our assertion that the domain occupied b
polymer tends to block passage by the tracer, conside
particular chain configuration. This can be visualized a
curve, $R(s8)%, wheres8is a parameter which takes value
between 0 ands. For a Gaussian chain this curve can
considered as a Wiener trajectory$R(s8)% where s8 is a
‘‘time’’ which varies between 0 ands. The parameters is
related to the bond lengtha and the number of monomers b

6Ds5Na2, ~1!

where D is an effective diffusion constant10,11 that deter-
mines the probability that the trajectory representing
polymer configuration is realized.

We next have to explain what we mean by the te
impenetrability. Let$r (t8)% be a trajectory of the center o
the tracer diffusing in the space free of chains for a timet,
where 0<t8<t. Recalling thatb is the tracer radius we wil
say that the tracer passes through the polymer provided
ur (t8)2R(s8)u.b throughout the range of possible values
t8 ands8. When this condition does not hold we will say th
the tracer that moves along the trajectory$r (t8)% does not
penetrate the polymer.

In this picture a tube of radiusb centered on the curve
$R(s8)% forms a domain forbidden to the center of th
spherical tracer~Fig. 2!. If different parts of this tube over
lap, the domain occupied by the chain is impenetrable to
tracer@Fig. 2 ~top panel!#. When such overlapping is negl
gible @Fig. 2 ~bottom panel!#, the tracer can traverse the d
main. In that case the tube volume,Vb($R(s8)%),will be pro-
portional tob2. If this dependence is absent, the degree
overlap is significant which effectively blocks the passa
One can estimate the degree of overlap by analyzing
dependence of tube volume,Vb($R(s8)%), on the tracer ra-
diusb. Hence we are led to consider properties of the volu
swept out by a fictitious spherical particle of radiusb, the
center of which moves along the trajectory corresponding
the polymer configuration,$R(s8)%.

Thus, to decide whether the tracer passes through
polymer one has to evaluate the dependence of the vol
Vb($R(s8)%) on the radius of the tracer,b. While this depen-

FIG. 1. The viscosity~in centistokes,d!, and conductivity in~mS/cm310,
s! of 15 weight percent PEG solutions in 0.01 M~aqueous! KCl at room
temperature as a function of the molecular weight of the polymer.
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dence onb cannot be estimated in the case of a spec
configuration, the average of this quantity over all config
rations has been found in Ref. 12 to be

^Vb~$R~s8!%!&5
4

3
pb318b2ApDs14pDbs

5
4

3
pb314A2p

3
ab2AN1

3

2
pa2bN. ~2!

This formula is derived in the appendix, to make the pa
self-contained.

When N@(b/a)2 the average volume calculated fro
Eq. ~2! is approximately given by

^Vb~$R~s8!%!&'
2

3
pa2bN. ~3!

While this has been derived for the volume averaged ove
possible realizations, we assume that it holds for the ov
whelming majority of realizations as well. Since the ave
aged volume is proportional tob it may be interpreted as th
volume of a pancake object with a thickness proportiona

FIG. 2. A tube of radiusb centered on the curve generated by a Gauss
random walk withN5100 steps each having a mean square length equa
1, i.e., a51, b51 in the top panel andb50.1 in the bottom panel. The
radius of gyration of this realization of the polymer molecule represented
the random walk isRg53.15 which is equal to the most probable value
Rg for N5100. The figures were produced using the Molscript progr
~Ref. 15!.
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b and the area proportional toNa2 @Fig. 2 ~top panel!#. This
is the origin of our earlier statement that the chain dens
covers a two-dimensional surface.

The major point is that the average volume is prop
tional to the first power ofb rather than to its square. Thi
means that different parts of the tube overlap. As a con
quence the chain is an impenetrable obstacle to passag
the tracer. This may be considered as a consequence o
fact that a Gaussian chain is a curve with a fractal dimens
of 2, which means that it densely covers a two-dimensio
manifold.13 Thus, a picture emerged from our consideratio
of a tracer diffusing among impenetrable domains occup
by polymers differs dramatically from one based on the
ive picture described earlier.

Both pictures will be used to gauge the degree to wh
the polymer impedes the diffusive motion of the tracer. T
allows us to see the resemblance and distinction betw
results predicted by the two models. We will assume that
density of obstacles is sufficiently small so that the tra
motion is still diffusive. The presence of obstacles is tak
into account by replacing the obstacle-free diffusion cons
of the tracer,D0, by an effective diffusion constantDeff .
When the volume fraction,c, of obstacles is small,c!1, the
relation between these two constants is expressed as

Deff'D0~12ac!, ~4!

where a is a constant which depends on the shape of
obstacles.

In the naive picture which assumes that each monome
an independent scatterer, the dependence ofc on the radiusb
satisfiesc}b3cm , wherecm is the concentration of mono
mers. When the polymer is treated as a Gaussian chain
dependence changes toc}a2bcm . This follows from Eq.~3!
by multiplying the averaged volume by the concentration
scatterers,cm /N. By the same line of argument we find th
for a linear chainc}ab2cm. The striking conclusion to thes
considerations is thatc, and henceDeff depends oncm and is
independent of chain length, regardless of which mode
the chain is used.

The fact thatDeff is independent of chain length migh
seem to be surprising since the viscosity of the solution
creases sharply with chain length.10 However, viscosity of
the polymer solution is determined by the energy dissipa
on length scales much larger than those associated with
dissipation due to the tracer’s motion. This heuristic arg
ment suggests whyDeff should be insensitive to both cha
length and solution viscosity and close toD0 as well. This
behavior is qualitatively similar to that of the conductivi
shown in Fig. 1. However, there is an obvious gap betw
the mobility of ions, and therefore the conductivity, and t
diffusion of the neutral spherical tracer analyzed in t
present report.

An aspect to be emphasized is that we have discusse
intermediate regime in which the tracer radius is large co
pared to the bond~Kuhn! length but small compared to th
size of the chain. When the size of the tracer is small co
pared to the bond length, we also expect that the diffus
constant should be nearly unchanged as compared to
ly
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value in pure solvent,D0. Presumably the naive picture su
fices to treat this case. At the same time, when the size of
tracer is comparable with the chain size the diffusion coe
cient is inversely proportional to the solution viscosity.

In summary, our analysis of the influence of polym
molecules on the diffusive properties of a spherical tracer
shown that the diffusion constant for the tracer is close
that in pure solvent in spite of significant growth of solutio
viscosity. To lowest order the correction to the diffusion co
stant is proportional to the first power of monomer conce
tration and is independent of chain length. Different mod
of the chain lead to different dependences of the effect on
radius of the tracer. The present results have been der
using four major assumptions:~1! The tracer radius is much
larger than the bond length and much smaller than the siz
the polymer molecule.~2! The polymer molecules can b
approximated as Gaussian chains.~3! Chain dynamics can be
neglected.~4! The volume fraction of the polymer is smal
In addition, we assume that the diffusion constant of
tracer is independent of its distance from the polymer.
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APPENDIX: DERIVATION OF EQ. „2…

The volumeVb($R(s8)%) is defined by integral over an
indicator function

I b@r ,$R~s8!%#5H 1, min
0<s8<s

ur2R~s8!u,b

0, otherwise
~A1!

which is to say,

Vb~$R~s8!%!5E I b@r ,$R~s8!%#dr . ~A2!

Thus, to find the average ofVb($R(s8)%)with respect to all
Wiener trajectories starting fromR~0!, it is necessary to find
the average ofI b@r ,$R(s8)%#.But this average is equal to th
fraction of Wiener trajectories which have visited a spheri
domain of radiusb centered atr at least once during the tim
s. The fraction indicated is equal to the probability that
diffusing particle, initially atR~0!, has been trapped during
time interval equal tos on the surface of an absorbing sphe
of radiusb centered atr . This probability is known to be14

^I b@r ,$R~s8!%#&5
b

ur2R~0!u
erfc H ur2R~0!u2b

A4Ds J ~A3!

for ur2R(0)u.b. An integral overr of this function leads to
the result in Eq.~2!.
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